لینک فایل شناسایی و تیپلوژی سازه های اسیب پذیر مناطق شهری و روستایی در برابر زلزله 36ص

36 ص

مقدمه

همانطور که مستحضر هستید، ایران یکی از 10 کشور بلاخیز جهان است که هر ساله خسارات مادی و جانی بسیار سنگین را متحمل می شود.

اکثر زلزله های گذشته ایران بیشتر از ماهیتی روستایی برخوردار بوده و سازه های آسیب دیده و خراب شده عموماً ساز های یک طبقه خشتی، سنگی، آجری و از نظر سکونت به صورت تک خانوار بوده اند.

بعد از وقوع این زلزله ها، عملیات امداد و نجات به صورت خودامدادی و با وسایل ابتدایی نظیر بیل و کلنگ صورت می گرفته و به ندرت نیاز به عملیات پیچیده جستجو با کمک تجهیزات مکانیکی پیشرفته بوده است.

متأسفانه در حال حاضر در صورت وقوع زلزله در هر یک از شهرهای بزرگ لرزه خیز ایران مثلاً تهران، تبریز، مشهد با توجه به آسیب پذیری لرزه ای سازه های ساختمانی آنها، ابعاد خرابیهای سازه ای بسیار گسترده و تعداد افراد محبوس در آوارهای ایجاد شده، بسیار زیاد خواهد بود که اهمیت شناسایی تیپ لوژی سازه های آسیب پذیر در مناطق شهری و روستایی را بیش از پیش مورد توجه قرار می دهد.

با شناسایی سازه های آسیب پذیر و تخریب و بازسازی مجدد آنها می توان از برزو فاجعه ای انسانی تا حد زیادی کاست.

 

بیان مسئله

عنوان تحقیق شناسایی و تیپلوژی سازه های آسیب پذیر مناطق شهری و روستایی در برابر زلزله می باشد. به طور جزئی و دقیق تر یعنی بیان نارسایی های محدودة مورد مطالعه در برابر زلزله، راهکارهای تدوین تدابیر اصولی در جهت رسیدن به یک الگوی صحیح و مقاوم در برابر زلزله و بررسی این موضوع در سه دوره قبل، حین و بعد از حادثه.

 

اهمیت و ضرورت تحقیق

در کشور ما به اصول ساخت و ساز توجه خاصی نمی شود، هرکس با هر سلیقه و با هر تحصیلاتی اقدام به ساخت و ساز مسکن می نماید که نتیجه آن خانه های غیرمقاوم و غیراستانداردی است که هر لحظه جان افراد بی گناه را تهدید می کند.

در این تحقیق سعی شده به شناسایی تیپ لوژی سازه های آسیب پذیر در مناطق شهری و به خصوص روستایی بپردازیم تا شاید با خواندن این مطالب اندکی به فکر فرو برویم که براستی چرا به این امر مهم و حیاتی که یکی از اساسی ترین نیازهای ما به شمار می رود، توجه بیشتری ننموده ایم و شاید بتوانیم نگاه مسئولان مربوطه را به اهمیت هرچه بیشتر ساخت و ساز و تدوین اصول و قوانینی در جهت بهتر ساختن خانه ها، جلب نماییم.

فهرست مطالب

عنوان

صفحه

فصل اول

 

مقدمه

 

بیان مسئله

 

اهمیت و ضرورت تحقیق

 

اهداف تحقیق

 

ادبیات و پیشینه تحقیق

 

جامعه آماری

 

روش تحقیق

 

فصل دوم

 

تجزیه و تحلیل یافته های تحقیق

 

زلزله

 

اثرات کلی زمین لرزه ها

 

الف) حرکات مستقیم سازه ها

 

ب) گسل های سطحی زمین

 

ج) امواج جزر و مدی

 

د) جاری شدن سیل آتش سوزی، انفجار و غیره

 

چگونه زلزله بر ساختمانها اثر می کنند

 

عوامل تشدید کننده آسیب پذیری ساختمان

 

مطالعه بافت بیرونی روستا و شهر

 

پراکندگی و تراکم واحد روستایی و شهری

 

بررسی تأثیر روابط اجتماعی در بافت روستا و شهر

 

مطالعه کالبدی بافت روستا و شهر

 

آشنایی با سازه های شهری و روستایی

 

سازه های آجری

 

سازه های فلزی

 

سازه های مرکب فولادی و بتن مسلح

 

سازه های بتن مسلح

 

اهداف مقاوم سازی

 

آسیب پذیری قابل پیش بینی

 

مقاوم سازی لرزه ای سازه های با مصالح بنایی

 

روش های مقاوم سازی

 

انتقادات

 

پیشنهادات

 

چرخه مدیریت بحران

 

1- مرحله پیش گیری

 

2- مرحله آمادگی

 

الف) آمادگی در برابر خطر

 

ب) تخفیف خطر

 

ج) جلوگیری از خطر

 

3- مرحله مقابله

 

4- مرحله بازسازی

 

آمادگی برنامه های ترویجی

 

نتیجه گیری

 

منابع

 


کلمات کلیدی : زلزله,جغرافیا برای پشتیبانی و خرید فایل به سایت اصلی فروشنده مراجعه بفرمائید:

لینک دریافت فایل از سایت اصلی


ادامه مطلب ...

لینک فایل عنوان سمینار : نوسان سازه -48 صفحه word

مشخصات فایل

عنوان سمینار : نوسان سازه

قالب بندی: word

تعداد صفحات: 48

 

 

محتویات

 

فهرست

مقدمه

معیارنوسان- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -5

نوسان ساز مقاومت منفی- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6

روش های تولید مقاومت منفی- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -8

  • دیود تونلی
  • دیود گان
  • دیود زمان گذربهمنی
  • دیود زمان گذربهمنی پلاسما بدام افتاده

تکنیکهای طراحی نوسان ساز- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -11

نوسان سازهای فیدبک دار- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 12 

  • نوسان ساز هارتلی
  • نوسان ساز کلپیتس

نوسان سازهای کنترل شده با کریستال- - - - - - - - - - - - - - - - - - - - - - - - - 16

اسیلاتورهای مایکروویو- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  17

اسیلاتورهای ترانزیستوری- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 20

تشدید‌کننده‌های مایکروویو- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -23

مدارهای تشدید سری و موازی (یادآوری) - - - - - - - - - - - - - - - - - - - - - - -   23 

تشدیدکننده های خطوط انتقال- - - - - - - - - - - - - - - - - - - - - - - - - - - - - 31

کاواک های موجبر مستطیلی- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -36

کاواک های موجبراستوانه‌ای- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  37

تشدید کننده های دی الکتریک- - - - - - - - - - - - - - - - - - - - - - - - - - - - - 38

ایجاد کردن رزوناتور- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 39

اسیلاتورDR - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 41

      - تنظیم فرکانس در DR

اسیلاتورتنظیم شوندهYIG - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 46

اسیلاتور   Gunn  element- - - - - - - - - - - - - - - - - - - - - - - - - - - 47

 

 

 

 

 

 

 

 

 

 

 

 

 

 

مقدمه

اسیلاتورهای مایکروویو و RF به طورکلی در سیستم های نسبتا مدرن و سیستم های بی سیم مخابراتی برای تولید منبع سیگنال ، ترکیب  فرکانسی و تولید موج حامل به کار می رود.

اسیلاتورهای نیمه هادی با قطعات غیر خطی فعال مثل دیود و ترانزیستور به صورت ترکیب با مدارات پسیو برای تبدیل DC به سیگنال حالت دائمی سینوسی  RFمورد استفاده قرارمی گیرد.

مدارات اسیلاتوری ترانزیستوری پایه می توانند  به صورت عمده در فرکانسهای پایین همچنین با نوسان ساز های کریستالی برای تولید فرکانس های پایدار و با نویز کم استفاده شوند.

در فرکانس های بالا دیود ها و ترانزیستورها به صورتی بایاس می شوند که در نقطه کار به صورت یک مقاومت منفی عمل می کنند . با استفاده از کاواک ،خطوط انتقال یا رزوناتورهای     دی الکتریک  برای تولید فرکانس های نوسان پایه تا 100GHz به کار می روند .

آنالیز دقیق این مدارات با استفاده از نرم افزارهای CAD انجام می شود .

ما ابتدا یک یادآوری در مورد اسیلاتور ترانزیستوری شامل ساختارهای هارتلی و کلپیتس که بهتر از اسیلاتور کریستالی عمل می کنند خواهیم داشت سپس اسیلاتورهای مایکروویو را بررسی می کنیم .

اسیلاتورهای مایکروویو به خاطر داشتن مشخصه های متفاوت ترانزیستوری و توانایی ایجاد قطعات مقاومت منفی و ضریب کیفیت بالاتر با ساختارهای فرکانس پایین تفاوت اساسی دارند.

 

 

 

 

 

معیارنوسان :

معیارنوسان کردن رامی توان به چند روش دقیق و معادل هم بیان کرد.او‏‏‏‏‏ل اینکه در یک نوسان ساز دارای یک عنصر فعال دو دریچه ای باید یک مسیرفیدبک وجود داشته باشد واز طریق آن بخشی ازخروجی به ورودی برگردانده شود.اگر سیگنال فیدبک شده بزرگتر وهم فاز با ورودی باشد، نوسان شروع شده ودامنه اش به طور مرتب زیاد می شود، تا اینکه عنصراشباع شده، بهره حلقه فیدبک به یک برسد. بنابراین معیاراول این است، مداری نوسان می کند که درآن مسیرفیدبکی با بهره حداقل برابربا یک وبا تغییرفازصفروجودداشته باشد. معیار دیگر برای نوسان این است که ضریب پایداری مدار نوسان ساز باید کوچکتر از یک  باشد.

اگر یکی از دو معیار فوق برای یک مدار معتبر باشد ،دترمینال معادلات ولتاژهای گره های یاجریانهای حلقه های آن برابر صفر خواهد بود.این معیار سوم نوسان خواهدبود، و روش ریاضی مناسبی برای یافتن فرکانس نوسان می باشد، به شرط اینکه بتوان معادلات جبری لازم را حل کرد.

سرانجام، اگر یک مدار بالقوه نوسانی را به طور فرضی به یک بخش فعال و یک بارتقسیم کنیم، هنگام پیدایش شرایط نوسان بخش حقیقی امپدانس خروجی بخش فعال منفی می شود. این یک شرط لازم برای نوسان است ولی کافی نیست؛ معیار منفی شدن مقاومت برای توصیف کار نوسان سازهای مایکروویو که در آنها از دیودهای بامقاومت منفی(دیودهای تونلی،گان،ایمپات وتراپات)استفاده می شود،مفید است.

   


اساس مدل نوسان ساز :

شکل زیر یک سیستم حلقه بسته را نشان می دهد که قسمت اساسی یک مدل نوسان ساز را همین فیدبک مثبتی که از خروجی به ورودی اعمال می شود شامل می گردد، شرایط لازم برای نوسان یک مداررا با بد ست آوردن تابع تبدیل حلقه بسته برسی میکنیم:

 

که با فرض اینکه مقدار ولتاژ خروجی مخالف صفر وولتاژورودی برابر با صفر باشد داریم:

  

که تحت این شرایط می توانیم بگوییم نوسان ساز در حالت پایدار قرار دارد و این حالت پایدار در فرکانس خاصی اتفاق می افتد و باعث نوسان مدار می شود.

 

که در این صورت در فرکانس خاصی  تابع حلقه بسته (تابع انتقال کل سیستم) ناپایدار می- شود. به عبارت دیگراگر سیستم فوق دارای گین مدارباز به اندازه یک و زوایای 2kp باشد، وارد نوسان می شود.

 

نوسان ساز مقاومت منفی :                                

عنصری که انرژی الکتریکی را به انرژی حرارتی یا مکانیکی تبدیل می کند را می توان در مدار به  صورت یک  مقاومت معادل مثبت نشان داد. از طرف دیگر می توان عنصری را که بتواند شکل های دیگر انرژی رابه انرژی الکتریکی تبدیل کند با یک مقاومت منفی معادل نشان داد.دیودهای تونلی و گان، ترانزیستورهای تک اتصالی و ترکیب های خاصی از دو یا چند ترانزیستور می توانند انرژی را مصرف کرده و بخشی از آن رابه صورت یک سینوسی فرکانس بالا تبدیل کنند. بنابراین این عناصر در یک گستره فرکانسی خاص، خاصیت مقاومت منفی ازخود  نشان می دهند.

برای ساختن نوسان ساز، یک مدارتشدید موازی مرکب ازعناصرR,L,C رابا یک مقاومت منفی معادل موازی می کنیم؛ به دلیل اینکه بین صفحات خازن دوقطبی هایی وجود دارد که این دوقطبی ها دارای اتلاف هستند و این تلفات به صورت مقاومت ذاتی در خازن ظاهر می شود و از طرف دیگر هرسلف نیز به دلیل داشتن مقاومت ذاتی نمی گذارند که سیستم وارد نوسان شوند، باید روشی پیدا کنیم که این مقاومت ها را تا حد صفر کاهش دهد. که راه حل آن استفاده از مقاومت منفی است.که در این صورت داریم:

  

مدار نوسان ساز با مقاومت منفی

    


 

 

 

 

شرط شروع نوسان مدار :

 

ولی قبل ازشروع نوسان مقاومت مدارتشدیداز لحاظ اندازه از مقاومت منفی بزرگتر باشد، در حالت ماندگار اندازه دو مقاومت برابر می شوند؛ از لحاظ نظری این حالت تنها دریک فرکانس پیش می آید.

 

روش های تولید  مقاومت منفی :

  • د یود تونلی(Tunnel Diode) :

دیود پیوندی با آلایش بسیار زیاد که در بعضی از محدوده های کاری خود در جهت مستقیم، مقاومت منفی دارد که در نتیجه پدیده تونلی در مکانیک کوانتوم به وجودمی آید. این دیود می- تواند از مواد  نیمه رسانای مختلفی از قبیل ژرمانیوم، سیلیکن، گالیم آرسنایدوانیدیم آنتیموناید ساخته شود وبه عنوان نوسان ساز و تقویت کننده ای که می تواند به خوبی تا بسامدهای ریزموج عمل کند، بکار رود.

اثر تونل :

 سوراخ شدن سد پتانسیل مستطیلی در نیمه رسانا با ذره ای که دارای انرژی کافی برای عبور از سد نیست. موج مربوط به این ذره به طور تقریبی به صورت کامل در اولین لبه سد  بازتابیده   می شود، اما مقدار کمی از آن از سد می گذرد.

 

2 ) دیود گان(Gunn Diode) :

قطعه نیمه رسانای دو سری که بااستفاده از اثرگان نوسان های ریزموج ایجاد می کند، یا سیگنال ریز موج  ورودی را تقویت می کند. بسامد نوسان به زمان گذر حوزه بار بستگی دارد و می تواند از 50 گیگا هرتزهم فراتر رود، عملکرد آن درمد زمان گذراست.

اثرگان:

اثری که توسط ج.ب.گان در سال1963 کشف شده است؛ اگر یک ولتاژ DC ثابت و بیشتراز یک مقدار بحرانی به اتصال های دو طرف قطعه کوچکی از گالیم آرسنید نوع N اعمال شود، نوسان های ریزموج ایجاد خواهند شد. بسامدهای تولید شده، با توجه به ابعاد قطعه و سایر عوامل فیزیکی بین 500 مگاهرتز تا بالای 50 گیگا هرتز قرار دارند.

3)‌‌‌ دیود زمان گذر بهمنی ضربه ای(IMPATT Diode) :

نوعی دیود ریزموج حالت جامد که اساس کارآن ترکیب اثرشکست بهمن ضربه ای واثر زمان گذرحامل درتراشه نازک گالیم آرسنیدی یا سیلیسیمی ودرنهایت تولید مشخصه مقاومت منفی است. با قراردادن صحیح دیود در کاواک یاموج بر تنظیم شده می توان نوسان سازیا تقویت کنننده ای به دست آورد که درگستره گیگا هرتز کار می کند.

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

ساختار و مشخصه های دیود زمان گذر بهمنی

 

                                                                                     

 

 

 

   

 

 

 

 

 

 

 

   


 

  

ساختار و مشخصه های دیود زمان گذر بهمنی

 

 

 

4) دیود زمان گذر بهمنی پلاسما به دام افتاده(TRAPATT  Diode) :

دیود ریزموج حالت-جامد که بسامد کارآن به عنوان نوسان ساز به طورتقریبی با ضخامت لایه فعال تعیین می شود. این دیود یک قطعه زمان- گذرمانند دیود ایمپات است ولی در مد متفاوتی عمل می کند؛ منطقه شکست بهمنی درداخل ناحیه رانش حرکت می کند و پلاسمای بارفضای به دام افتاده ای را در داخل ناحیه پیوند  PN به وجود می آورد.

 

تکنیک های طراحی نوسان ساز :

طراحی نوسان ساز بیشتریک هنراست تا یک علم دقیق. مدارهای به کار رفته تنها هنگامی در حالت ماندگار قرار می گیرند که به قدر کافی در ناحیه غیرخطی رفته ، متوسط بهره در یک تناوب، کسری از بهره نامی سیگنال کوچک ترانزیستورشود. در برگه اطلاعات ترانزیستور تنها پارامترهای مربوط به شرایط اولیه مدار نوسان ساز ذکر شده است ولی مقادیر نهایی و مقادیر  گذرا معلوم نمی باشد. اساس مدارهای معادل و ابزارهای تحلیلی متداول خطی بودن است. بنابراین شرایط حالت ماند گاریک نوسان سازرا در حالت کلی نمی توان به طور دقیق با       روش های ریاضی ساده معین کرد.

برای شروع نوسان خروجی یک عنصر تقویت کننده باید با بهره بزرگتر از یک وتغییر فاز صفریا مضرب صحیحی از 360 درجه به ورودی فیدبک شود. در یک مدار نوسان ساز ایده آل این وضعیت تنها در یک فرکانس پیش می آید؛ واین همان فرکانس نوسان است. اگر تغییر فاز شبکه فیدبک وترانزیستور مستقل از نقطه کار ترانزیستور باشد، فرکانس نوسان در حالت    ماندگار همان فرکانس شروع نوسان خواهد بود و این فرکانس را می توان با تحلیل سیگنال کوچک به طور دقیق پیش بینی کرد. همچنین می توان بهره می نیمم ترانزیستور که به ازای آن نوسان شروع می شود را تعیین کرد، ولی این بهره وفرکانس نوسان تمام چیزی است که از تحلیل سیگنال کوچک می توان به دست آورد.

بستگی فرکانسی عناصرغیرفعال نیز یک عامل پیچیده کننده دیگراست. خازن های بزرگتر از چند صد پیکوفاراد درحوالی 10 مگاهرتز القایی به نظرمی رسند، و خازن های پراکنده بین         دورهای یک القاگر می تواند امپدانس آن را خازنی کند. مدل کردن این اثرها با روش های نظریه مدار مشکل است واین اثرها می توانند باعث شوند که فرکانس نوسان با چیزی که تحلیل مداری پیش بینی می کند متفاوت  باشد.

با استفاده ازالقاگرهای با ضریب کیفیت بالا و با موازی کردن خازن های کوچک(pF 100تا300) با تمام خازن های کنارگذر و تزویج می توان این عیوب را رفع کرد. در فرکانس هایی که     خازن های بزرگ القایی می شوند، این خازن های کوچک یک اتصال کوتاه به وجود می آورند. بنابراین، تحلیل یک نوسان ساز تنها شروع فرآیند طراحی است. این تحلیل شاید بتواند مقادیر تمام عناصرتعیین کننده فرکانس را بد ست دهد، ولی در مورد مطالبی چون توان خروجی، بازده، خلوص شکل موج، پایداری فرکانسی وحساسیت به دما وتغییر ولتاژ منبع چیز زیادی نمی گوید. برای حل این نکات محاسبات سیگنال کوچک به عنوان نقطه شروع در نظرگرفته شده، مدار ساخته وتنظیم می شود تا عملکرد مطلوب بدست آید.

 


کلمات کلیدی : نوسان سازه,معیارنوسان,نوسان ساز مقاومت منفی,روش های تولید مقاومت منفی,دیود تونلی,نوسان سازهای کنترل شده با کریستال,ایجاد کردن رزوناتور برای پشتیبانی و خرید فایل به سایت اصلی فروشنده مراجعه بفرمائید:

لینک دریافت فایل از سایت اصلی


ادامه مطلب ...

لینک فایل موضوع مقاله: بررسی مدل سازه در حالت خطی-18 صفحه word

مشخصات فایل

موضوع مقاله: بررسی مدل سازه در حالت خطی

قالب بندی: word

تعداد صفحات: 18

 

 

محتویات

بررسی مدل سازه در حالت خطی

 تحلیل غیرخطی سازه موجود

طیف مورد استفاده

- طبقه بندی اجزای سازه

 اجزای کنترل شونده توسط تغییر شکل

 اجزای کنترل شونده توسط نیرو

استفاده از میراگر TADAS

استفاده از میراگر ویسکو الاستیک

استفاده از میراگرهای ویسکوز

میراگر اصطکاکی

استفاده از مهاربند همگرا

استفاده از دیوار برشی

 

 

 

عنوان مقاله: بررسی مدل سازه در حالت خطی

پس از جمع آوری اطلاعات لازم برای مدلسازی سازه جهت ارزیابی اولیه سازه تحت یک آنالیز خطی استاتیکی مطابق با آئین نامه ۲۸۰۰ قرار گرفت تا اولاً ضغف های آن مشخص گردد و ثانیاً نیاز به مقاوم سازی سازه بررسی گردد.

برای مدلسازی سازه از آنجا که طبقه زیرزمین سازه دارای دیوارهای آجری با کیفیت خوب و به ضخامت۵/۱ متر بوده و اطراف آن نیز خاک نسبتاً متراکم قرار دارد، و از طرف دیگر به دلیل پاره ای از مسائل دسترسی به تعدادی از اجزای سازه ای در طبقه زیرین ممکن نبوده و نیاز به عملیات سونداژ داشته است. به نحوی که اطلاعات کافی جهت مدلسازی دقیق غیرخطی برای سازه، فراهم نشده است. لذا در حالت خطی سازه در دو حالت با در نظر گرفتن طبقه زیرین و بدون در نظر گرفتن آن مورد بررسی قرار گرفته است و در هر حالت نیز بطور جداگانه اثرات سختی اتصال خورجینی روی رفتار سازه بررسی شده است.

در نهایت با مقایسه نتایج برای دو حالت با درنظر گرفتن زیرزمین و بدون درنظر گرفتن زیرزمین مشاهده می شد به دلیل سختی زیاد طبقه زیرین عملاً می توان تراز پایه را از طبقه همکف فرض نموده و از طبقه زیرزمین در مدلسازی سازه صرفنظر نمود.

در آنالیز استاتیکی سازه مشاهده می شود که سازه در تحمل بارهای قائم مشکلی نداشته و قادر به تحمل بارهای مرده و زنده اختصاص داده شده باشد. از طرف دیگر سازه در تحمل بارهای جانبی بسیار ضعیف بوده و تنش های تعداد زیادی از تیرها، اتصالات، و بخصوص ستونها فراتر از حد قابل تحمل مصالح بوده و لذا ضعف مفرط سازه در تمل بارهای جانبی مشاهده می گردد. علاوه بر ضعف سازه در تحمل نیروهای جانبی  با توجه به زمان تناوب سازه در جهت های مختلف مشاهده می گردد که سختی سازه بسیار کم بوده و عملاً زمان تناوب سازه بسیار بالاتر از حدود معمول برای قاب ساختمان ده طبقه است. همینطور تغییر مکانهای کلی ونسبی سازه تحت نیروهای زلزله بسیار فراتر از حدود مجاز آئین نامه می باشد. بنابراین با توجه به نتایج گرفته شده از آنالیز خطی سازه نیاز سازه به مقاوم سازی کاملاً مشخص می باشد.

در ادامه با توجه به گستردگی نتایج بدست آمده خلاصه اهم نتایج بدست آمده در حالت خطی ارائه می شود.

 تحلیل غیرخطی سازه موجود:

پس از مدلسازی در حالت خطی، سازه در نرم افزار Perform  بصورت سه بعدی مدلسازی شد و تحت آنالیز استاتیکی غیرخطی قرار گرفته است.

به این منظور کلیه مشخصات اعضای تیروستون  شامل مشخصات پلاستیک مقاطع مطابق با ضوابط FEMA356 محاسبه شده، و در نرم افزار مورد استفاده قرار گرفته است.

جهت ارزیابی سازه المانهای سازه به دو گروه کنترل شونده توسط نیرو و کنترل شونده توسط تغییر شکل طبقه بندی می شوند. در این ارتباط در قسمت های بعدی توضیحات بیشتری ارائه می گردد.

در آنالیز اولیه غیرخطی سازه در جهت x مشاهده می شود که مفاصل پلاستیک در تیر لانه زنبوری در ناحیه ای بین دو ورق تقویتی تیر که در آنجا تیر فاقد ورق پرکننده جان است تشکیل می گردد، و از آنجا که انتظار نمی رود تیرهای لانه زنبوری در این قسمت ظرفیت لازم جهت تغییر شکل پلاستیک را داشته باشند، لذا در مدلسازی تیر و در ناحیه های با جان غیرپر، تیر کنترل شونده توسط نیرو در نظر گرفته شده است بطوریکه هنگامی که لنگرهای وارده در این نواحی از حد الاستیک تجاوز نماید، تیر در نقاط موردنظر مقاومت خود را از دست می دهد.

با توجه به نتایج حاصله در این مرحله مشاهده می شود که در جهت y دیوار برشی به دلیل خردشدن بتن مقاومت خود را از دست می دهد و لذا منحنی ظرفیت سازه پله ای شکل بوده و بعد از اینکه دیوار برشی مقاومت خود را از دست می دهد، افت قابل توجهی در منحنی ظرفیت مشاهده می شود که سبب افزایش تغییر مکان هدف برای سازه می گردد.

به هر حال مشاهده می گردد ه که حتی در حالت ایمنی جانی، دیوارهای برشی و ستونهای زیادی در سازه دارای ظرفیت کافی نمی باشند و بعلاوه سازه دارای تغییر مکان هدف بسیار بالایی می باشد و در ضمن کلیه اتصالات خورجینی دارای دوران های پلاستیک قابل توجه فراتر از ظرفیت تحمل خود می باشند. همچنین در مهاربندهای واگرا نیز ظرفیت تیرها کافی نبوده و دوران خمیری آنها فراتر از حدود مجاز مطابق دستورالعمل FEMA356 می باشد. لذا سازه از نظر دستورالعمل FEMA356 آسیب پذیر بوده و نیاز به مقاوم سازی دارد.

در جهتx نیز سازه به دلیل ضعف مهاربندها وستونها وشکست تیرهای لانه زنبوری غیر شکل پذیر دارای ضعف های عمده ای می باشد که حتی در حالت ایمنی جانی تغییر شکلهای بسیار زیادی در سازه ایجاد می گردد و بعلاوه تعداد بسیار زیادی از ستونها نیز دارای ظرفیت مقاوم لازم نمی باشند و نیاز به تقویت دارند.

لازم به ذکر است که برای دستیابی به هدف بهسازی مبنا مطابق دستورالعمل FEMA356  علاوه بر حالت ایمنی جانی، ضواب مربوط به سطح عملکردی آستانه فروریزش نیز باید ارضاء گردد.

( نتابج شامل عکس فنی پوش لور و DCR ها و ….)


کلمات کلیدی : بررسی مدل سازه در حالت خطی,استفاده از دیوار برشی,استفاده از مهاربند همگرا,میراگر اصطکاکی ,استفاده از میراگرهای ویسکوز,استفاده از میراگر ویس برای پشتیبانی و خرید فایل به سایت اصلی فروشنده مراجعه بفرمائید:

لینک دریافت فایل از سایت اصلی


ادامه مطلب ...

لینک فایل پاورپوینت در مورد استفاده از کامپوزیت های FRP در ساخت،بهسازی و تقویت سازه ها

لینک دانلود و خرید پایین توضیحات

دسته بندی : پاورپوینت

نوع فایل :  .ppt ( قابل ویرایش و آماده پرینت )

تعداد اسلاید : 35 اسلاید

____________________________________________

محتویات

فهرست مطالب

فهرست مطالب

1)چکیده

2)کامپوزیت چیست؟

3)شکل های مختلف کامپوزیت FRP درمهندسی عمران

4)سیستم های تقویت سازه ها با استفاده از کامپوزیت های FRP

5)قابلیت های بالقوه FRP درتقویت و ترمیم سازه ها

6)مزایای استفاده از ورقه های FRP

7)بررسی محدودیت های تقویت خمشی تیرهای بتن آرمه با FRP و ارائه ی راه کارهای پیشنهادی

8)دال های طره ای تقویت شده با FRP

9)خلاصه و نتیجه گیری

10)منابع

 

 

 

1)چکیده:

 

استفاده از کامپوزیت های FRP در مهندسی عمران در سال های اخیر توجه بسیاری را به خود جلب کرده است.

وزن سبک،مقاومت زیاد و مقاومت در برابر خوردگی از جمله خواصی است که این نوع مواد را در قالب های گوناگون در امر مهندسی ساختمان مطرح ساخته است.

 

 

 

2)کامپوزیت چیست؟    

کامپوزیت ها موادی هستند که از دو قسمت تشکیل یافته اند:

1)اجزای میکروسکوپی

2)غیر قابل حل در یکد یگر

  از دیر باز مهندسین عمران با انواع گوناگون کامپوزیت ها کار کرده اند از چوب می توان به عنوان یک کامپوزیت طبیعی نام برد و در یک

نگاه کلی تر بتن به صورت ماده کامپوزیت با اجزای قابل تمایز از دیگر مواد مرکب در ساخت سازه بوده است.

قسمت اول از ماده کامپوزیت FRP که قسمت بار بر آن نیز محسوب می شود الیاف است. قسمت دوم که بیشتر نقش نگهداری الیاف را در کنار یکدیگر بر عهده دارد چسب یا رزین نامیده می شود.


کلمات کلیدی : پاورپوینت در مورد استفاده از کامپوزیت های FRP در ساخت,بهسازی و تقویت سازه ها ,پاورپوینت در مورد استفاده از کامپوزیت های FRP در ساخت,بهسازی و تقو برای پشتیبانی و خرید فایل به سایت اصلی فروشنده مراجعه بفرمائید:

لینک دریافت فایل از سایت اصلی


ادامه مطلب ...

لینک فایل پاورپوینت سازه بلند

مشخصات فایل:
عنوان: پاورپوینت سازه بلند
قالب بندی: پاورپوینت
تعداد اسلاید: 31
 
 
فهرست مطالب:
سازه های متداول برای ساختمانهای بلند
سازه دیوار باربر
سازه هسته برشی
سازه تیر دیواری
سیستم های فاصله گذاری و خرپای متناوب
سیستم های دال مسطح
برج سیرز
دویت چیست نات
مونادنوک
 
 
قسمتی از پاورپوینت:
     از نظر مهندسی؛ سازه بلند به سازه ای اطلاق می شود که نسبت ارتفاع به ابعاد دیگر آن باعث شود نیروهای جانبی ناشی از باد و زلزله ، بر طراحی آن تاثیر قابل توجهی بگذارد و یا از دیدگاهی دیگر ساختمان های بالای ده  طبقه و زیر صد طبقه را ساختمان بلند و بالای صد طبقه را آسمان خراش می نامند
      لذا مقاوم سازی در این سازه ها به علت ارتفاع زیاد از دو نظر مورد اهمیت بسیار می باشند
      تاثیر نیروی باد بر سازه
      تاثیر نیروی زلزله
      در این مقاله به روشهایی که برای مهار نیروی باد بر سازه به کار می روند؛ خواهیم پرداخت و بررسی روش میراگر در مهار نیروی زلزله را به کنفرانس بعدی محول می نماییم
      نیروی باد سازه های بلند اولیه  به علت وزن زیاد ساختمان با دیوارهای باربر ساخته شده از مصالح بنایی چنان بودند که نیروی باد قادر نبود به جاذبه زمین غلبه کند .
      با افزایش ارتفاع،  سرعت باد افزایش می یابد. سرعت متوسط باد، استاتیک است؛ یعنی ثابت است ولی سرعت وزش های ناگهانی دینامیکی است؛ بنابراین در طراحی ساختمان ها علاوه بر خمش یک طرفه (ناشی ازبرخورد باد به یک طرف ساختمان(، خمش دو طرفه که تنش های برشی و پیچشی اضافی روی اعضای سازه وارد می کند و در نهایت تغییر مکان دوطرفه ایجاد می کند، روبرو هستیم.
و . . .

کلمات کلیدی : پاورپوینت سازه بلند,سازه های متداول برای ساختمانهای بلند,سازه دیوار باربر ,سازه هسته برشی ,سازه تیر دیواری ,سیستم های فاصله گذاری و خرپای متن برای پشتیبانی و خرید فایل به سایت اصلی فروشنده مراجعه بفرمائید:

لینک دریافت فایل از سایت اصلی


ادامه مطلب ...